Cycle 2

Exploring the “D” in DEMS.

For Cycle 2 I wanted to take some of the lessons learned from Cycle 1 and further develop them. (My Cycle 1 is the “Order of the Veiled Compass” project) My tendency is to focus on the building and engineering of projects and less so on the “devising”, this was an opportunity to take a deeper dive in to the part of DEMS I typically spend the least time on. My presentation was a simple PowerPoint slide show that explored how people interact with technology, not exactly riveting website material, so this post will present the information is , hopefully, a more interesting manner. The original presentation can be found here https://docs.google.com/presentation/d/1qVqp1khbiujVJ4hC5ohTrTZNLGGDL-AK/edit?usp=drive_link&ouid=106949091808183906482&rtpof=true&sd=true

How do people interact with technology in both everyday life and in regards to an Experiential Media System? I identified what I believe are three key factors to our interactions, Cultural Conventions, Proximity, and the Physical Experience.

Since this post is on a website I can make several inferences about you (the reader). First, you have access to electricity and an internet connection. You can be anywhere on the earth, assuming you are indoors and there is a light switch, that switch is located within a foot or so of the doorway. If you have been a passenger in some sort of vehicle, that machine had a break peddle on the left and an accelerator on the right, with some type of switch within easy reach of the steering mechanism to activate turn signals. Cars, busses, trucks, etc… all share a similar technical language. An argument can certainly be made that many of these conventions are the result of Edison Electric, Westinghouse, and similar companies developing these technologies and distributing them, but the road to the present day is not as straight forward as it seams.

For example, I am 99.9999% confident that you can not drive a Model-T Ford. Looking at the above photo there are many familiar controls (assuming you can drive a stick). With the exception of the steering wheel and the gear shift lever, almost none of the familiar looking controls do what you think they do. It took awhile, but eventually the automakers of the world settled on a control layout that allows anyone who knows how to drive a car drive almost all other cars.

The key take away form all of this is that we are all conditioned to expect certain technologies to work is specific ways. Lights are turned on by a stitch by the door or a switch on the light itself. All cars have an accelerator and a break. None of us need a manual to use a faucet or garden hose, regardless of where on earth we find one. Any sink with a garbage disposal will have a control switch within a few feet of it.

We interact with technology is variety of ways, for this project I focused mainly on touch. Advances in machine vision and hearing have made it possible to interact with devices via gesture and our voice, but that is a conversation for a different day.

I wanted to take a closer look into what makes a physical interaction with technology a good one. This is personal preference of course, but I am confident that there are certain aspects we can all agree upon. One is that quality matters. Imagine you press a button on a vending machine or arcade game and its a plastic piece of junk that rattles, if it lights up it probably flickers, and it makes you press it several times to be sure it did something; that’s not the best interaction with technology. Compare that to a nice solid metal toggle switch, even better if that switch has some type of safety cover on it! I don’t want to go through the steps of launching a missile to make a pot of coffee, but I do appreciate solid feeling controls on the coffee maker.

Feedback is a critical component to the physical experience. A doorbell is an excellent example of a system with ambiguous feedback. You press the doorbell. Did it work and nobody is home? Did the doorbell not ring? Unless you are inside to hear it there is no indication that it worked or not, which is frustrating. It can be very frustrating when technology doesn’t let the user know that it is working. Imagine an elevator that didn’t indicate which floor it was going to, or a telephone that was perfectly silent until answered, those would be horrible user experiences!

Of particular interest to me and my home DEMS project, is the idea of proximity. When a user interacts with a piece of technology, how far away is the response? Is it at the users fingertips like with a typewriter, or is the action completely obscured form the user such as a furnace controlled by a remote thermostat? Perhaps is a middle ground, remote but visible, like a garage door opener.

Building upon the idea of cultural expectations for technology, the concept of proximity helps us further describe our interactions with tech. Light switches are usually found near doorways. We enter a room, find the switch, and the light turns on. This is an example of close proximity, it is immediately obvious that the action of the user caused the technology to respond. Many of us have experienced the frustration that arises when the proximity has been increased. I know in my house there are several light switches whose function remains a mystery. My action of flipping the switch is not rewarded with a response that is immediately visible.

Lights are an example of a common piece of tech that we are accustomed to having close proximity to. The same is true with doors, television remotes, hand tools, etc… HVAC technology is usually hidden out of sight. When we adjust the thermostat the machines come to life but they are often out of sight and provide no indication that they are functioning.

All of this and DEMS.

The goal of all this is to help Devise an experiential media system. By having an understanding of the rules we all play by when it comes to technology, we can begin to play with the rules. For example, what if a light switch played a honking sound when flipped instead of turning on a light? Or what would someone do if they turned a doorknob and a door several feet away opened instead? By taking the ideas of cultural expectations, the physical experience, and proximity and playing with expectations, many new possibilities emerge.

I can think of no greater example of this that the creation of Disneyland in 1955. The gates opened on July 17 and the world of immersive entertainment changed forever. (The opening day was an absolute disaster and I encourage you to read about it!) Guests were presented with technology and experiences that didn’t exist before, the rules had rewritten.

The above set of books served as a fascinating guide to the design and implementation of many attractions of the Disney parks and the 1964 Worlds Fair in New York. The goal was to sell tickets of course, but the means was by creating unique experiences that the world had never seen before. This required the invention of new technologies and concepts. One of the key problems to solve was how to get as many people as possible through the attractions as quickly as possible while also ensuring they had a good time.

Above is “It’s a Small World” from the 1964 Worlds Fair. The ride was designed and built for the Pepsi pavilion and featured small boats for guests to ride. This allowed for a large number of people to be cycled through the attraction at a steady pace.

A better example of how technology and proximity come together is in the Jungle Cruise ride. Above is a piece of concept art for the ride by Mark Davis. The Disney team had to figure out how to tell a narrative as quickly as possible without letting the guests actually interact with anything. Guests must “keep their hands and arms inside the ride at all times” to protect them, and the attractions, from harm. By necessity the tactile experience is removed and the proximity is fixed at a middle distance. Guests also only have a few moments to observe the various scenes before they move past them. By limiting the “scenes” to simple motions and exaggerated behaviors it was possible for riders to “get” the visual gag being shown to them.

In theme parks, shrinking the proximity of the attraction to the guests can have an extreme impact. Above is the Yeti from the Expedition Everest ride at Disney’s Animal Kingdom in Orlando. It is one of the largest animations ever made, over 25′ tall, and goes from remote proximity to uncomfortably close very quickly. Anamatronics were commonplace by the time this ride came to be, they were often of the mostly static variety as seen on the Jungle Cruise or the Haunted Mansion. Here designers used proximity to terrify people. As the riders raced past the yeti on a roller coaster the enormous machine would lunge and swipe at the riders, just barley missing them (from the riders perspective). This never before seen behavior terrified people and was a huge success! Unfortunately the technology at the time was not up to the task and the animatronic has been mostly static for years due to maintenance issues.

Historic DEMS

Another source of inspiration for Cycle 2 was the work, “Stained Glass” by Sonia Hilliday and Laure Lushington. They explore the history and styles of stained glass through the ages focusing mainly on Christian cathedrals. Disney may have invented theme park, but perhaps it was the church that created DEMS? (What counts as the first DEMS is certainly up for debate, but here I will cherry pick the cathedrals as a prime example of a DEMS.)

Above is Sainte-Chapelle in Paris, built 1241-1248. This is an outstanding example of a DEMS that takes into consideration proximity, the tactile experience, and cultural expectations. But first a little stage setting. Imagine you are visiting Paris in the 13th century, you have no idea what electricity is, or anything about technology more complex than a shovel, and you walk into that cathedral. It is the technological equivalent to a modern US Navy super-carrier. Every detail has been thought about and addressed. The smell of incense lingers in the air, a choir sings from an alcove, and everywhere is brilliant light. I imagine the experience would be like being hit with a metaphorical sledge hammer.

The physical experience is top notch in every respect. There are no cheap materials in this place, everything is solid wood, iron, and stone. The cultural part of the interaction is immense but I will not dive into that here. But what about proximity? Perhaps we are well to do and can get seats close to the altar for mass, the less well off sit further away. The monks and sisters are cloistered behind screens, preventing us from getting too close. What are we trying to gain proximity to in the first place? Proximity to the divine is the goal here. By utilizing the senses and cultural expectations the cathedral brings us closer to heaven. Proximity is not limited to physical distance in a DEMS.

Lets take a U-turn from the DEMS of the cathedral and visit medieval Kyoto, Japan. Above is Saihoji Temple, also known as the moss temple. Sophie Walker writes about such places in her excellent work, “The Japanese Garden.” If you ever want to write a book about Japanese gardens there is a rule you need to follow. For every one page about plants and the act of gardening, you must first write 40 pages about the human condition and its history.

What looks like a natural arrangement of plants and rocks, is actually a meticulously crafted DEMS. Every aspect of a Japanese garden has been done with great care and thought. Every rock, every plant, or absence of plants, has been painstakingly planed out and executed with the upmost care. Like the cathedral the physical experience is top notch, all natural in this case, but we can expect stone and untreated wood in addition to the plants. The technology in the garden is hidden and deceptive. Below is a prime example of this. We see a simple path. Like the lights switch we all know how to step from stone to stone, but take a closer look. The stones are of uneven size and shape and do not lie in a straight line. To keep from tripping guests must walk slowly with care, paying careful attention to their footing. However, in the intersection there is a much larger flat stone. The designer of this path deliberately placed every stone knowing that when the guest got to the flat spot they would stop and take a better look at their surroundings. If there is a “best place” to view this area of the garden, it is form that stone. Using proximity and the careful control of what a guest can see and what is obscured is the technology at play here.

Another important concept from the Japanese garden is the simple technology of a gate. A gate is a physical barrier that dictates our access to something. Below we can see a garden path with a gate preventing access to what I presume is a tea house. Lets abstract the idea of a gate to a more metaphorical idea, lets think of gates as thresholds or transitions. In the garden, gates, either real or implied, are opportunities to transition our thoughts and emotions. The cultural purpose of these gates is to reduce our proximity to zero, we are invited to engage in self reflection. In the image below the idea is that to pass the threshold, here represented by a physical gate, the guest must leave something behind. It could be some worry, worldly desire, etc… The technology is extremely subtle, but equal in power to the cathedral.

TO BE CONTINUED



Leave a Reply